
Parallel Algorithm for Spherical Delaunay

Triangulations and Spherical Centroidal Voronoi

Tessellations

Douglas W. Jacobsena,∗, Max Gunzburgera, Todd Ringlerb, John Burkardta,
Janet Petersona

aDepartment of Scientific Computing, Florida State University, Tallahassee, FL 32306,

USA
bTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

Spherical centroidal Voronoi tessellations (SCVT) are used in many applications

in a variety of fields, one being climate modeling. They are a natural choice

for spatial discretizations on the Earth, or any spherical surface. The climate

modeling community, which has started to make use of SCVTs, is beginning to

focus on exa-scale computing for large scale climate simulations. As the data

size increases, the efficiency of the grid generator becomes extremely important.

Current high resolution simulations on the earth call for a spatial resolution

of about 15km. In terms of an SCVT this corresponds to a quasi-uniform

SCVT with roughly 2 million Voronoi cells. Computing this grid serially is very

expensive and can take on the order of weeks to converge sufficiently for the

needs of climate modelers. This paper outlines a new algorithm that utilizes

existing computational geometry tools such as conformal mapping techniques,

planar triangulation algorithms, and basic domain decomposition, to compute

SCVTs in parallel, thus reducing the overall time to convergence. This new

algorithm shows speedup on the order of 4000 when using 42 processors over

STRIPACK in computing a triangulation used for generating an SCVT.

keywords: Spherical Centroidal Voronoi Tessellation, Spherical Delaunay Triangula-

∗Corresponding Author E-mail Address: dwj07@fsu.edu

Preprint submitted to Elsevier June 16, 2011

tion, Parallel, Stereographic Projection, Domain Decomposition, High Performance

Computing

1. Introduction

Over the past few decades Voronoi diagrams have become a natural choice for

spatial discretizations due to their ability to handle arbitrary boundaries, den-

sities, and refinement well. These grids can be used in a wide range of applica-

tions, and can be created for almost any geometry, including multi-dimensional

space. However, creating these meshes can be overly time consuming, especially

for high quality, high resolution grids. To attempt to speed up grid generation,

several groups have worked on creating parallel divide-and-conquer algorithms

to handle the construction of Delaunay triangulations ([1],[2]), which are the

dual grids of Voronoi diagrams. The few algorithms that do exist for the parallel

construction of Delaunay triangulations are limited to two-dimensional planar

surfaces.One specific field which has recently begun adopting Voronoi diagrams,

in addition to other unstructured meshes for spatial discretizations, is climate

modeling ([3], [4]). With a recent trend towards exa-scale in most aspects of

high performance computing, there is a demand for fast algorithms to generate

high resolution spatial meshes. Also of interest are variable resolution grids with

smooth transition regions [5].

With the current need for a high resolution spherical grid generator in mind,

we combine tools in computational geometry to allow for fast generation of

spherical centroidal Voronoi tessellations. These tools lead to a new algorithm

which makes use of stereographic projections, and a novel method for domain

decomposition. This paper outlines this new algorithm, designed to allow for

the parallel computation of spherical centroidal Voronoi tessellations that may

tessellate the entire sphere, or some subregion of interest. The paper is organized

in the following fashion: Section 2 will cover some background material as well

as detail the new algorithm, Section 3 will present some results on actual grids

generated and performance results for the parallel algorithm, and Section 4 will

2

conclude with a discussion.

2. Theory/Calculation

2.1. Delaunay Triangulations

A k-simplex is defined as a set of k + 1 points that are the vertices of the

k-simplex. For example, a 2-simplex would be a triangle, and a 3-simplex would

be a tetrahedron. A k-simplex is made up of what are referred to as s-faces,

where a s-face is made up of any s + 1 distinct vertices of the k-simplex. For

example, a 2-face is a triangular face, a 1-face is an edge, and a 0-face is a vertex.

Given a point set, P , in R
d, the Delaunay triangulation of this point set,

D(P), is the set of d-simplices such that:

• A point, p, in R
d, is a vertex of a simplex in D(P), ⇐⇒ p ∈ P ;

• The intersection of two simplices in D(P), is either the empty set, or a

common face;

• The interior of the circumscribing d-sphere through the k + 1 vertices of

a particular simplex contains no other points from the set P .

If the circumscribing d-sphere has more than k+1 points lying on its perime-

ter, the triangulation is Delaunay, but not unique. The Delaunay triangulation

of a point set defined in R
d is related to the convex hull of the point set when

projected onto a paraboloid in R
d+1 [1].

2.2. Voronoi Tessellations

The dual mesh of a Delaunay triangulation is called the Voronoi tessellation.

Given a set of points, P , called generators, the Voronoi tessellation, V = Vi, is

defined as

||x− xi|| < ||x− xj || ∀x ∈ Vi, (1)

where Vi represents a Voronoi cell, and xi ∈ P and xj ∈ P represent generators.

This property, called the Voronoi property, states that every point contained

3

inside a Voronoi cell is closer to its cell generator than to any other generator

in the set P . To be a centroidal Voronoi tessellation, the cell generators xi

are required to be the centers of mass for the cells, meaning xi = x∗

i , with x∗

i

defined as

x∗

i =

∫

Vi
xρ(x)dx

∫

Vi
ρ(x)dx

, (2)

where ρ(x) defines a non-negative point-density function which can be used to

create variable resolution meshes.

The center of mass and the generator of a Voronoi cell are generally not co-

incident. The requirement that xi and x∗

i be the same can be imposed through

one of many algorithms, such as Lloyd’s algorithm [6]. Lloyd’s algorithm im-

poses this by iterating on the point set, moving each generator to its Voronoi

cell’s center of mass until they are identical. Lloyd’s algorithm is more rigorously

discussed in [7].

In general, the density function in (2) affects the grid spacing of the final

SCVT. If we arbitrarily select two Voronoi cells from a tessellation, and index

them i and j, their grid spacing and density are related as

hi

hj

≈

[

ρ(xj)

ρ(xi)

]
1

d′+2

, (3)

where d′ is the dimension of the simplical elements in the tessellation, ρ(xi) is

the density function as in (2) evaluated at a point xi ∈ Vi, and hi is a measure

of the local grid spacing at the point xi. Though (3) is an open conjecture, it

has been supported through many numerical studies as can be seen further in

[5].

Replacing all of the constructs defined in Sections 2.1 and 2.2 with their anal-

ogous components on the surface of a sphere creates the spherical complements

to Delaunay triangulations and Voronoi tessellations. The spherical versions of

Delaunay triangulations and Voronoi tessellations are used for the construction

of SCVTs as opposed to planar CVTs which have been discussed above for sim-

plicity. While planar CVTs tessellate a 2-dimensional region with polygons, an

4

SCVT tessellates the surface of a 3-dimensional sphere with polygons.

2.3. Stereographic Projections

Stereographic projections are special mappings between the surface of a

sphere and a plane tangent to the sphere. Not only are stereographic projections

a conformal mapping, meaning that angles are preserved, but the projections

also preserve circularity. As will be discussed below, preserving circularity is

a particularly important property of stereographic projections. Stereographic

projections also map the interior of these circles to the interior of the mapped

circles ([8], [9]). Preserving circularity implies that the stereographic projection

preserves Delaunay criteria as shown in Section 2.1, because Delaunay triangle

circumcircles (along with their interiors) are preserved, and therefore Delaunay

triangulations are preserved. This projection can be used to compute a trian-

gulation of a portion of the sphere, by allowing the triangulation to be carried

out in the more convenient geometry of the plane.

To define the stereographic projection, we need to define the following quan-

tities, all in Cartesian coordinates in R
3. C is the center of the sphere, typically

the origin, T is the point of tangency (where the projection plane is tangent to

the sphere), F is the focus point, which is a reflection about C of T, and P is

a point on the surface of the sphere. The stereographic projection of P into a

point Q on the plane is defined in (4) and (5).

s = 2 ∗
(C− F) · (C− F)

(C− F) · (P− F)
(4)

Q = s ∗P+ (1− s) ∗ F (5)

Figure 1 illustrates the stereographic projection, using the variables defined

for (4) and (5).

5

Figure 1: Cross-sectional illustration of a stereographic projection from a sphere into a tangent
plane.

For the purposes of this paper, it is more useful to define the projection

relative to T, rather than F. A simple substitution of T = C−F produces (6)

and (7).

s = 2 ∗
1

(T) · (P+T)
(6)

Q = s ∗P+ (s− 1) ∗T (7)

This projection can be used to project from R
d to R

d−1, and can be repeated

until d− 1 = 2.

2.4. Algorithm Details

The parallel algorithm closely follows the layout of Lloyd’s algorithm, with

a few modifications. The key modification is computing a Delaunay triangula-

tion in parallel, since all other portions are considered embarrassingly parallel.

The idea of computing a planar triangulation in parallel has been discussed

for several years [1]. Typically, such algorithms divide the point set up into

smaller regions that can then be triangulated independently from each other.

Each triangulation needs to be stitched together to form a global triangulation.

6

This stitching, or merge step, is typically computed in serial because it could

involve modifying significant portions of each triangulation if the division was

not performed correctly. The merge step is the main difference between most

parallel algorithms. The main benefit of the presented algorithm is that the

merge step is done in parallel. To create a spherical triangulation in parallel, a

similar technique is employed as in the planar triangulations.

First, the sphere is divided into N overlapping regions Yk(Tk, Rk) for k =

1, . . . , N , which are defined by a geodesic arc Rk, and a tangent plane defined

at the region’s point of tangency Tk. Each of these regions is owned by an

independent processor, and these regions also have some connectivity, or list of

neighbors, defined. On the sphere, these regions would look like overlapping

umbrellas, as can be seen in figure 2(a). Each region (or processor) would take

from the global point set, pi ∈ P , the points that are inside of its region radius,

where cos−1(Tk · pi) ≤ Rk. Keep in mind, this sorting may cause one point

may be in several regions, as in figure 2, where figure 2(a) shows an example

domain decomposition with 12 regions that could be used on a set of generators

shown triangulated in figure 2(b). Since the end goal of this algorithm is to

compute an SCVT, the regional triangulations do not need to be merged on

every iteration because they overlap.

7

(a) 12 Generator SCVT

(b) 10242 Generator Delaunay Triangulation

Figure 2: Domain Decomposition Example. Figure 2(a) is an SCVT used for a 12 proces-
sor domain decomposition, where figure 2(b) is an 10242 generator Delaunay triangulation
computed using the 12 generator SCVT for parallelization. Each colored ring represents a
regions radius Rk, where region centers Ck are the Voronoi cell center, at the center of each
pentagonal structure in 2(a).

P̃k = S[P̂k,Tk]. After a spherical point set P̂k is determined, P̃k =

S[P̂k,Tk] where S[P̂k,Tk] represents the stereographic projection of P̂k into

the plane tangent to the sphere at point Tk. Because a stereographic projection

preserves circles (and their interiors), the projection also preserves the Delaunay

8

criteria that every triangle’s circumcircle needs to be empty. The newly pro-

jected point set is now triangulated using some planar triangulation algorithm,

such as Triangle [10] which is used in this study. If the mapping from global

point index to local point index is appropriately maintained, a simple map from

local index to global index gives the approximate triangulation for the region on

the sphere. One final step is needed to make this the true triangulation for the

region, which is to remove all “non-Delaunay” triangles. The criteria required

to be a Delaunay triangle in the global triangulation is defined in (8) as

cos−1 ||Tk − ĉi||+ r̂i < Rk, (8)

where Tk is a region center, Rk is a region radius, r̂i is a triangle circumradius,

and ĉi is a triangle circumcenter.

Since each region is unaware of the triangles and points outside of its radius,

only triangles whose circumcircles are completely contained inside of the region

radius Rk are guaranteed to be Delaunay, as no other points from the point set

can be in their circumcircle. Any triangle whose circumcircle extends outside

of its regions radius may contain points that were not in the P̂k, and should

be discarded from the region’s triangulation because this triangle may not be

adhere to the Delaunay criteria. Figure 2.4 visualizes this point, where 3(a)

shows a projected planar triangulation P̃k before removing triangles that do not

satisfy (8), and 3(a) shows the exact same triangulation after removing these

potentially non-Delaunay triangles. After this step is complete, the regional

triangulation is now exactly Delaunay. After the regional triangulation is com-

puted, the integration step of Lloyd’s algorithm can begin. The overlapping of

regions is key to this portion of the algorithm, because if the overlap of regions

is not large enough some true Delaunay triangles may not lie entirely in at least

one region.

9

(a) Before application of (8) (b) After application of (8)

Figure 3: Triangulations in a plane after Stereographic projection. 3(a) is the triangulation
before (8) is applied, and 3(b) is after it is applied

In Lloyd’s algorithm, after the Delaunay triangulation of the point set is

computed, every Voronoi cell center of mass must be computed by integration,

so its generator can be replaced. This step typically requires the computation of

the Voronoi diagram for a region in addition to the Delaunay triangulation pre-

viously computed. However, some careful geometry can reveal that one doesn’t

actually need the Voronoi diagram. A single triangle from a Delaunay trian-

gulation contributes to the integration of three different Voronoi cells. As seen

in figure 4, if the triangle is split into three kites, each made up of two edge

midpoints, the triangles circumcenter, and a vertex of the triangle, each one

contributes to the Voronoi cell associated with the triangle vertex that is part

of the kite. Integrating each kite, and updating a portion of the centroid integral

allows one to only use the Delaunay triangulation when computing a CVT or

an SCVT, so that no mesh connectivity needs to be computed on an iteration

basis.

10

Figure 4: Triangle division used for integrating Voronoi cells using only the Delaunay tri-
angulation without any adjacency information. Kite sections contribute to the Voronoi cell
centered at the vertex that is part of the kite. A, B, C vertices are generators in the point set,
where the point at the center of the triangle is the circumcenter of this triangle. Triangular
regions that are colored similarly contribute to the same vertex.

To make this algorithm parallel, one simply has to ensure that each generator

is only updated by one region. This can be done using one of a variety of domain

decomposition methods. The method used in this particular algorithm uses the

set of generators from a coarse SCVT to define region centers. Each region then

updates only the generators that are inside of its defined Voronoi cell based on

(1), using region centers Tk as xi and generators pi ∈ P as x. Since Voronoi

cells are non-overlapping, each generator will only get updated by one region.

As mentioned earlier, the overlapping of regions is necessary to ensure that the

triangulation of all points contained inside each region’s Voronoi cells is exact.

In practice, a region radius corresponding to the maximum distance to any

adjacent region center allows enough overlap for the triangulation to be exact

define in (9) as

Ri = max
j=1,...,N

cos−1(Ti ·Tj), (9)

where N is the number of region neighbors, Ti is the region center of interest,

Tj is a neighboring region center, and Ri is the geodesic arc distance for region

i.

11

While this heuristic allows the algorithm to work correctly, it may not be

optimal for variable resolution grids, as some regions might contain many more

points than they need to when they border both a fine and a coarse region.

Once each of the generators is updated, each region needs to transfer its

newly updated points only to its adjacent neighbors, not to all of the active

processors. This limits each processors communications to roughly 6 sends and

receives, regardless of the total number of processors used. After this step is

over, the convergence of the grid is checked, and the iterations continue, or stop

depending on the result.

2.4.1. Convergence Criteria

When checking for convergence, two metrics are used. Currently, the L2

norm (10) of the generator movement and the L∞ norm (11) of generator move-

ment are compared with some tolerance. If either norm reaches tolerance, the

iteration process is deemed to have converged. The L∞ is more strict, but both

of these norms follow similar convergence paths when plotted against iteration

number. There are other grid metrics that can be used, such as the clustering

energy [11] as in (12), but in practice this tends to be less strict, and more

computationally expensive, when compared with generator movement.

L2 =

√

∑Npts

i=1 (xn
i − xn+1

i)2

Npts

(10)

L∞ = max
i=1,...,Npts

(|xn
i − xn+1

i |) (11)

CE =

Npts
∑

i=1

∫

Vi

(ρ(x)||x− xi||
2dx) (12)

2.4.2. Initial Conditions

A variety of initial conditions can be used in an SCVT generator. The most

obvious is Monte Carlo points [12]. These can either be uniformly distributed

over the sphere, to create a quasi-uniform initial condition, or they can be

sampled using the target density function, to potentially reduce the number of

12

iterations required for convergence. In addition to using Monte Carlo initial

conditions, one can use a bisection method to build fine grids from a coarse grid

[13]. To create a bisection grid, a coarse grid will be converged, using as few

points as possible. After this coarse grid is converged, the midpoint of every

Voronoi cell edge, or Delaunay triangle edge is added to the set of points. This

causes the overall grid spacing to be reduced by roughly a factor of two in every

cell. It also makes the point set roughly four times as large. In this paper,

uniform Monte Carlo points and the bisection method will be used to compare

timings for grid creation, however there are many other options one could use

as an initial condition.

3. Results

Two different types of grids are presented to show the robustness of this

algorithm. To begin, quasi-uniform meshes are created, followed by more com-

plicated variable resolution meshes that cover the entire sphere. This method

can also be used to create limited area grids on the sphere, however this will

not be discussed in this paper.

For all of these results, serial versions were computed on an Intel Core 2

Duo T8100 CPU with 3GB of RAM, and parallel versions were computed using

Florida State University’s High Performance Computing Facility.

3.1. Quasi-Uniform results

STRIPACK [14] is an ACM TOMS algorithm that computes Delaunay tri-

angulations on a sphere. STRIPACK is a serial code used as a baseline for

comparison in this study. It is currently one of the few well-known spherical

triangulation libraries available, and is written in Fortran 77. Figure 5 shows

the performance of STRIPACK [14] as the number of generators is increased

through bisection as mentioned in Section 2.4.2. The green dashed line represent

the portion of the code that performs the integration of the Voronoi cells and

the red solid line represent the portion of the code that performs the Delaunay

triangulation. It is clear that the majority of the time per iteration is spent

13

in computing the Delaunay triangulation, and as the number of generators in-

creases the time spent computing a Delaunay triangulation grows more rapidly

than the time to integrate all Voronoi cells.

Figure 5: Timings for a STRIPACK based SCVT Generator at 162, 642, 10242, and 40962
generators. Red solid lines represent the time spent in STRIPACK computing a triangulation,
where green dashed lines represent the time spent integrating the Voronoi cells outside of
STRIPACK in one iteration of Lloyd’s algorithm.

Since most climate models are shifting towards global high resolution simu-

lations, the target quasi-uniform grid for this paper is a global 15km resolution

grid, which corresponds to 2621442 grid points, or Voronoi cells. Grids created

based on uniform Monte Carlo, and bisection initial conditions are compared.

The time for these grids to converge to 10−6 in the L2 norm, as in (10), is pre-

sented. A threshold of 10−6 is the strictest convergence levels that the Monte

Carlo grid can attain, and is therefore chosen as the convergence threshold for

this study. However, the bisection grid can converge well beyond this point.

Table 1 shows timing results for the parallel algorithm comparing these two

different options of initial conditions. It is clear from this table that bisection

14

initial conditions provide a significant speedup in the overall cost to generate a

grid, seeing as it takes roughly 1/20th of the time to converge a bisection grid

when compared to a Monte Carlo grid. Based on the results presented in table

1, only bisection initial conditions are used for the following experiments, unless

otherwise specified.

Timed Portion Bisection (B) Monte Carlo (MC) Speedup MC
B

Total Time (ms) 3,526,041 70,581,300 20.01
Triangulation Time (ms) 73,684 21,164,512 287.23
Integration Time (ms) 235,016 12,211,376 51.95

Communication Time (ms) 3,152,376 33,713,473 10.69

Table 1: Timing results for MPI-SCVT with Bisection and Monte Carlo initial conditions and
the speedup of Bisection relative to Monte Carlo initial conditions

Tables 2 and 3 compare the algorithm described in this paper (MPI-SCVT)

with STRIPACK [14], for computing spherical Delaunay triangulations. The

results in these tables compare the cost to compute a single triangulation of a

163842 generator (60km global) grid. Table 2 compares STRIPACK with the

final triangulation routine in MPI-SCVT. This routine produces a full trian-

gulation of the entire sphere, and is only called once, at the very end of the

grid generation process. The final triangulation routine involves each region

computing its respective Delaunay triangulation. Due to the overlap in regions,

the final triangulation is simply the unique union of all of these triangulations,

keeping only one copy of each triangle.

Algorithm Procs Regions Time (ms) Speedup
STRIPACK 1 1 207528.81 Baseline
MPI-SCVT 1 2 9504.02 21
MPI-SCVT 42 42 5663.30 37

Table 2: Comparison of STRIPACK with Serial and Parallel versions of MPI-SCVT using
final triangulations

Table 3 compares STRIPACK with the triangulation routine in MPI-SCVT

that is called on every iteration. The results presented relative to MPI-SCVT in

table 3 are averages over 2000 iterations. It is clear from this table that we see a

15

significant speedup over both the serial versions of MPI-SCVT and STRIPACK

when using only 42 processors.

Algorithm Procs Regions Time (ms) Speedup
STRIPACK 1 1 207528.81 Baseline
MPI-SCVT 1 2 3623.09 57
MPI-SCVT 42 42 50.6572 4092

Table 3: Comparison of STRIPACK with Serial and Parallel versions of MPI-SCVT using per
iteration triangulations

As was previously mentioned, the drastic different between Tables 2 and 3

is due to the different algorithms for computing triangulations. While Table 2

presents timings that are directly comparable to STRIPACK, Table 3 presents

timings more useful in computing SCVTs.

As a comparison with figures 5, figures 6 and 7 present timing graphs made

from MPI-SCVT. From these four plots, it is clear that the increase in time to

compute the Delaunay triangulation does not grow as fast with problem size

as it did in STRIPACK. Two processors are used, because this is the minimum

amount of parallelization that MPI-SCVT supports, and MPI-SCVT requires at

least 2 regions because the stereographic projection has a singularity at the focus

point. Eventually, at around 163842 generators, the triangulation becomes more

expensive than the integration step at least for 2 processors. As the number of

processors increases this problem size might increase as well. Figure 6 represents

the timings of MPI-SCVT for 2 regions as the problem size increases. Figure

7(a) represents the timings for a 40962 generator grid, which is a global 120km

resolution, where figure 7(b) represents a 163842 generator grid, with a 60km

resolution, and figure 7(c) represents a 2621442 generator grid with a 15km

resolution.

16

Figure 6: Timings for various portions of MPI-SCVT using 2 processors and 2 regions. As
the problem size increases the slope of both the triangulation (Red-Solid) and the Integration
(Green-Dashed) remain constant. The triangulation does not become more expensive than
the integration until after roughly 163842 generators.

17

(a) 40962 Generator Timings

(b) 163842 Generator Timings

(c) 2621442 Generator Timings

Figure 7: Timing Results from MPI-SCVT vs. Number of processors. Constant problem
size, shown as parallelization is increased. Red solid lines represent the cost of computing a
triangulation, where green dashed lines represent the cost of integrating all Voronoi cells, and
blue dotted lines represent the cost of communicating each regions updated point set to it’s
neighbors.

18

3.2. Variable Resolution results

Variable resolution grids here are only computed using MPI-SCVT. This

is done because STRIPACK performs comparably in both the uniform case

and variable resolution cases. The main issue in terms of variable resolution

grids comes in to the domain decomposition used for MPI-SCVT. For example,

a poor choice in domain decomposition could force the overlap in regions to

be significantly larger than it needs to be. The larger the overlap of regions,

the more points each region has to, needlessly, triangulate. This is especially

apparent when using variable resolution grids as will be seen later. Because

of this, two simple domain decompositions are used on a grid with a highly

varying density function applied, in addition to one more complicated domain

decomposition method. Timings are presented to determine which performs

better, and gives better load balancing. The density function used to compute

the grids in this Section can be seen in figure 8. The analytic form of the density

function used is shown in figure 8 and expressed as (13).

Figure 8: Density function that creates a grid with resolutions that differ by a factor of 16
between the coarse and the fine region. The maximum value of the density function is 1,
where the minimum value is (1/16)4.

ρ(xi) =
1

2 (1− γ)

[

tanh

(

β − |xc − xi|

α

)

+ 1

]

+ γ, (13)

where xi is constrained to lie on the surface of the unit sphere. This function

results in relatively large value of ρ within a distance β of the point xc where β is

measured in radians and xc is also constrained to lie on the surface of the sphere.

19

The function transitions to relatively small values of ρ across a radian distance

of α. The distance between xc and xi is computed as |xc − xi| = cos−1(xc · xi)

with a range from 0 to π. Figure 9 shows an example grid created using this

density function, with xc set to be φc = 3π/2, λc = π/6 where φ represents

longitude and λ represents latitude, γ = (1/16)4, β = π/6, and α = 0.15 with

10242 generators. This set of parameters used in (13) is referred to as x16.

(a) Coarse Region (b) Transition Region

(c) Fine Region

Figure 9: Figures show a variable resolution grid created using a density function with the
format defined in (13). All three figures are of the same grid, only the viewing perspective is
changed. Figure 9(a) shows the coarse region of the grid, 9(b) shows the transition region of
the grid, and 9(c) shows the fine region of the grid.

It was previously mentioned in Section 2.4 that the heuristic used to deter-

20

mine the region radius does not provide good load balancing with respect to

variable resolution grids. To resolve this issue, a new algorithm for determining

a regions point set is developed. The new algorithm begins by sorting points into

all of the region’s respective Voronoi cells. After all regions have their points in

their Voronoi cells, the union of this point set with the neighboring Voronoi cell’s

point sets gives the final point set used. This sort method is more expensive to

perform, however the better load balancing reduces idle computing time from

processors that have small loads. Timings using this new method in addition to

two dot-product-based methods for domain decomposition methods can be seen

in table 4. Figure 10 shows the number of points that each processor has to

triangulate on a per iteration basis. These timings and figures were computed

using the exact same initial conditions, which was a converged x16 grid with

163842 generators, and they all used 42 processors, and 42 regions. Timings

presented in table 4 are averages over 3000 iterations. Based on table 4 and

figure 10 there is a significant advantage to the Voronoi based decomposition in

that it not only speeds up the overall cost per iteration, but it provides a more

balanced load across the processors. In table 4 note that the timings are taken

relative to processor number 0, and as can be seen in figure 10(a), processor 0

has a very small load so the majority of its iteration time is spent waiting for

the processors with large loads to finish and catch up which is included in the

Communication column of the table.

Decomposition Triangulation Integration Communication Iteration Speedup
Uniform 14.9779 39.3149 2556.971 2611.35 Base

x16 104.793 276.681 1560.71 1965.56 1.32
Voronoi 98.5482 249.77 288.694 640.472 4.07

Table 4: Timings based on the domain decomposition used. Uniform uses a coarse Quasi-
uniform SCVT to define region centers and their associated radii, and sorts using a simple dot
product. x16 uses a coarse x16 SCVT to define region centers and their associated radii, and
sorts using a simple dot product. Voronoi uses a coarse x16 SCVT to define region centers
and their associated radii, and sorts using a Voronoi cell based sort.

21

(a) Uniform

(b) x16

(c) Voronoi

Figure 10: Number of points each processor has to triangulate. 10(a) uses a quasi-uniform
SCVT for the decomposition, with a simple dot product. 10(b) uses a x16 SCVT for the
decomposition, with a simple dot product. 10(c) uses a x16 SCVT for the decomposition,
with a more complicated sort based on the region’s Voronoi diagram.

22

3.3. Grid Generator Performance

To assess the overall performance of this algorithm, some scalability results

are presented in figure 11. Figure 11(a) shows that this algorithm can easily

under-saturate processors, and when this happens, communication ends up dom-

inating the overall runtime for the algorithm, which can be seen in figure 7(a),

and scalability ends up being sub-linear. As the number of generators increases

(as seen in figures 11(b) and 11(c)) the limit for being under-saturated is higher.

Currently in the algorithm, communications are done asynchronously using non-

blocking sends and receives. Also, overall communications are reduced by only

communicating with a region’s neighbors. This is possible because points can

only move within a region radius on any two subsequent iterations, and be-

cause of this can only move into another region which is overlapping the current

region. More efficiency gains could be realized through improvements in the

communication, and the integration algorithms to attempt could result in lin-

ear scaling. In theory, since all of the computation is local this algorithm should

scale linearly very well, up to hundreds if not thousands of processors.

23

(a) 40962 Generator Speedup

(b) 163842 Generator Speedup

(c) 2621442 Generator Speedup

Figure 11: Scalability results based on number of generators, Green is a linear reference where
Red is the Speedup computed using parallel version of MPI-SCVT against a serial version

24

4. Discussion

In this paper a new algorithm is presented that makes use of existing com-

putational geometry techniques to provide a parallel computation of a Delaunay

triangulation. This new algorithm is used to create spherical centroidal Voronoi

tessellations, with potential applications to climate modeling. Using a new grid

generator based on this algorithm, we compare performance against a similar

grid generator using a standard spherical triangulation algorithm.

A significant speedup is shown using this new algorithm for the computation

of spherical Delaunay triangulations, in addition to full SCVTs. Speedups were

computed against a well-known algorithm for computing spherical Delaunay

triangulations [14]. Also presented is a basic method for performing fast domain

decomposition on the sphere. The presented algorithm is robust enough to deal

with load balancing on variable resolution meshes, and is capable (though this

is not presented) of handling limited area meshes on the surface of the sphere

as well. The algorithm can further be modified to work on planar grids. Also,

the algorithm can potentially be modified to handle full 3D triangulations of

spherical structures by some mapping techniques

The source code used for MPI-SCVT can be downloaded at:

https://sourceforge.net/projects/mpi-scvt/

5. Acknowledgements

We would like to thank Geoff Womeldorff, and Michael Duda for many useful

discussions. The work of Doug Jacobsen, Max Gunzburger, John Burkardt, and

Janet Peterson was supported by the US Department of Energy under grants

number DE-SC0002624 and DE-FG02-07ER64432.

References

[1] P. Cignoni, C. Montani, R. Scopigno, Dewall: A fast divide and conquer

delaunay triangulation algorithm in e-d, Computer-Aided Design30(1998)

333–41.

25

[2] A. Chernikov, N. Chrisochoides, Algorithm 872: Parallel 2d constrained

delaunay mesh generation, ACM Transactions on Mathematical Soft-

ware34(2008) 6:1–6:20.

[3] C. Pain, et al., Three-dimensional unstructured mesh ocean modelling,

Ocean Modelling10(2005) 5–33.

[4] H. Weller, H. Weller, A. Fournier, Voronoi, delaunay, and block-structured

mesh refinement for solution of the shallow-water equations on the sphere,

Monthly Weather Review137(2009) 4208–24.

[5] T. Ringler, et al., Exploring a multi-resolution modeling approach within

the shallow-water equations, Monthly Weather Review(2011). Accepted.

[6] S. Lloyd, Least squares quantization in pcm, IEEE Transactions on Infor-

mation Theory28(1982) 129–37.

[7] Q. Du, M. Emelianenko, L. Ju, Convergence of the lloyd algorithm for

computing centroidal voronoi tessellations, SIAM Journal of Numerical

Analysis44(2006) 102–19.

[8] P. Bowers, W. Diets, S. Keeling, Fast algorithms for generating delau-

nay interpolation elements for domain decomposition, 1998. Unpublished:

http://www.math.fsu.edu/ aluffi/archive/paper77.ps.gz.

[9] A. Saalfeld, Delaunay triangulations and stereographic projections, Car-

tography and Geographic Information Science26(1999) 289–96.

[10] J. Shewchuk, Triangle: Engineering a 2d quality mesh generator and delau-

nay triangulator, Applied Computational Geometry: Towards Geometric

Engineering1148(1996) 203–22.

[11] Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: appli-

cations and algorithms, SIAM Rev41(1999) 637–76.

[12] N. Metropolis, S. Ulam, The monte carlo method, Journal of the American

Statistical Association44(1949) 335–41.

26

[13] R. Heikes, D. Randall, Numerical integration of the shallow-water equations

on a twisted icosahedral grid. part i: Basic design and results of tests.,

Monthly Weather Review123(1995) 1862–80.

[14] R. Renka, Algorithm 772: Stripack: Delaunay triangulation and voronoi

diagram on the surface of a sphere, ACM Transactions on Mathematical

Software23(1997) 416–34.

27

